Modelling gas and dust circumstellar environments with FRACS

Gilles Niccolini^{*†1}, Armando Domiciano De Souza^{*1}, and Philippe Bendoya¹

¹Observatoire de la Côte d'Azur (OCA) - Laboratoire Lagrange - CNRS UMR 7293 - Université Côte d'Azur (UCA) (OCA-UCA) – Observatoire de la Cote d'Azur – Bâtiment Fizeau Faculté des Sciences Parc Valrose 06108 NICE CEDEX 2, France

Abstract

Different approaches exist to model circumstellar environments (CSE), ranging from simple analytical and geometrical models to full hydrodynamic-radiative transfer models. Analytical models have the advantage of being very fast to calculate, but have a narrower domain on applicability and deliver less physical information than radiative transfer models. However, these complete and self-consistent radiative-transfer solution of the problem can be highly demanding in terms of computing time. In an attempt to create a model that is based on the physics of CSE without being too much time consuming we developed a new version of our fast ray-tracing algorithm for circumstellar structures (FRACS). FRACS is based on a parametrized CSE composed of dust and now also of gas (lines and continuum), and adopts a simplified radiative transfer approach (ray-tracing without scattering). FRACS is particularly adapted to the analysis (e.g. model fitting) of spectro-interferometric observations of CSE such as from Be stars, B[e] (supergiant, Herbig), among others.

Keywords: Circumstellar environment, radiative transfer

^{*}Speaker

[†]Corresponding author: nicolin@oca.eu